首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4016篇
  免费   81篇
  国内免费   222篇
化学   1235篇
晶体学   8篇
力学   619篇
综合类   6篇
数学   1535篇
物理学   916篇
  2023年   92篇
  2022年   38篇
  2021年   46篇
  2020年   95篇
  2019年   59篇
  2018年   50篇
  2017年   108篇
  2016年   116篇
  2015年   90篇
  2014年   209篇
  2013年   279篇
  2012年   235篇
  2011年   226篇
  2010年   176篇
  2009年   300篇
  2008年   292篇
  2007年   267篇
  2006年   209篇
  2005年   174篇
  2004年   147篇
  2003年   122篇
  2002年   121篇
  2001年   92篇
  2000年   90篇
  1999年   65篇
  1998年   54篇
  1997年   48篇
  1996年   40篇
  1995年   37篇
  1994年   46篇
  1993年   25篇
  1992年   34篇
  1991年   19篇
  1990年   7篇
  1989年   16篇
  1988年   20篇
  1987年   9篇
  1986年   25篇
  1985年   35篇
  1984年   34篇
  1983年   23篇
  1982年   32篇
  1981年   17篇
  1980年   32篇
  1979年   26篇
  1978年   31篇
  1977年   6篇
  1972年   2篇
  1969年   1篇
  1967年   1篇
排序方式: 共有4319条查询结果,搜索用时 27 毫秒
71.
Dynamic crack growth along a polymer composite-Homalite interface   总被引:1,自引:0,他引:1  
Dynamic crack growth along the interface of a fiber-reinforced polymer composite-Homalite bimaterial subjected to impact shear loading is investigated experimentally and numerically. In the experiments, the polymer composite-Homalite specimens are impacted with a projectile causing shear dominated interfacial cracks to initiate and subsequently grow along the interface at speeds faster than the shear wave speed of Homalite. Crack growth is observed using dynamic photoelasticity in conjunction with high-speed photography. The calculations are carried out for a plane stress model of the experimental configuration and are based on a cohesive surface formulation that allows crack growth, when it occurs, to emerge as a natural outcome of the deformation history. The effect of impact velocity and loading rate is explored numerically. The experiments and calculations are consistent in identifying discrete crack speed regimes within which crack growth at sustained crack speeds is possible. We present the first conclusive experimental evidence of interfacial crack speeds faster than any characteristic elastic wave speed of the more compliant material. The occurrence of this crack speed was predicted numerically and the calculations were used to design the experiments. In addition, the first experimental observation of a mother-daughter crack mechanism allowing a subsonic crack to evolve into an intersonic crack is documented. The calculations exhibit all the crack growth regimes seen in the experiments and, in addition, predict a regime with a pulse-like traction distribution along the bond line.  相似文献   
72.
Deformation and failure mechanism in AISI 4340 steel under ballistic impact   总被引:2,自引:0,他引:2  
Deformation and failure mechanism in quench-hardened AISI 4340 steel under ballistic impact is investigated. The influence of microstructure on damage evolution is also evaluated. Strain localization and shear failure along adiabatic shear bands are the dominant deformation and failure mechanisms. The time and critical strain for the commencement of strain localization is influenced by strain rate and microstructure. The microstructure of the steel sample also influenced the type of adiabatic shear bands formed during impact. Failure mechanism involves nucleation of micro-voids, which clusters to form bigger pores. Extremely fine micro-cracks are initiated adjacent to the pores and in shear flow direction along the shear bands. These micro-cracks become interconnected and grow to macro-cracks, which cause fracture of some of the investigated cylindrical steel samples under impact. The susceptibility of the adiabatic shear bands to cracking increases with decreasing tempering temperature of the steel.  相似文献   
73.
Interactions between a dynamically growing matrix crack and a stationary stiff cylindrical inclusion are studied optically. Test specimens with two different bond strengths (weak and strong) and three crack-inclusion eccentricities (e = 0, d/2 and 3d/4, d being inclusion diameter) are studied using reflection mode Coherent Gradient Sensing (CGS) and high-speed photography. These variants produce distinct dynamic crack trajectories and failure behaviors. A weaker inclusion-matrix interface attracts a propagating crack while a stronger one deflects the crack away. The former results in a propagating crack lodging (‘key-hole’) into the inclusion-matrix interface whereas in the latter the crack tends to circumvent the inclusion. When the inclusion is in the prospective crack path, the maximum attained crack speed is much higher in the weakly bonded inclusion cases relative to the strongly bonded counterparts. For a crack propagating towards a weakly bonded inclusion, the effective stress intensity factor (K e) value remains constant for each inclusion eccentricity considered. But these constant K e values increase with increasing eccentricity. A distinct drop in K e occurs when the crack is near the inclusion. In strongly bonded inclusion cases, on the other hand, monotonically increasing K e before the crack reaches the inclusion is observed. A drop in K e is seen just before the crack reaches the inclusion. The mode-mixity estimates are of opposite signs for weakly and strongly bonded inclusions in case of the largest eccentricity studied, confirming the observed crack attraction and deflection mechanisms.
H. V. Tippur (SEM member)Email:
  相似文献   
74.
In order to develop criteria for the physical evaluation of wood for soundboards of musical instruments, measurements were made of dynamic Young's modulusE, static Young's modulusE, internal frictionQ –1 in longitudinal direction, and specific gravity for numerous species of broad-leaved wood. From the results obtained, including those of our previous paper on coniferous wood [1], it was found that the suitability of wood for soundboards could be evaluated by the quantity ofQ –1/(E/), and that there were very high correlations betweenQ –1/(E/) andE/, and betweenE andE, regardless of wood species. Consequently, it becomes possible to select practically any wood suitable for soundboards by using the value ofE/, which can be measured easily, and it was derived that the relation betweenE/ andQ –1 of wood could be expressed by an exponential equation regardless of wood species.  相似文献   
75.
The characteristic-value analysis of plastic dynamic buckling is presented for columns under the action of elastoplastic compression wave caused by an axial-step load. Two critical conditions constituting a dynamic instability criterion are derived on the basis of transformation and conservation of energy. The governing equations, the boundary conditions and the continuity conditions derived by the use of the first critical condition are the same as those given by the adjacent-equilibrium criterion and are insufficient for determining two characteristic parameters involved in the governing equations. A supplementary restraint equation for buckling deformations at the plastic-wave front and the elastic-wave front is derived by the use of the second critical condition. Then, a couple of characteristic equations for two characteristic parameters are derived on the condition that the governing equations have non-trivial solutions satisfying the boundary conditions, the continuity conditions and the supplementary restraint equation. The critical-load parameters, dynamic characteristic parameter (exponent parameter of inertia term) and dynamic buckling modes are calculated from the solutions of the characteristic equations.  相似文献   
76.
A new method to assess the condensate drainage behavior of the air-side surface of compact heat exchangers—dynamic dip testing—is introduced. The new method is shown to provide highly repeatable data for real-time drainage. Results from experiments with more than 20 flat-tube and round-tube-and-fin heat exchangers are presented, and the data clearly show geometrical effects such as the impact of the tube type on condensate drainage. By comparing the results from dip testing to wind-tunnel experiments for the same heat exchangers, we find dip testing can serve as a powerful tool for assessing the condensate retention behavior. The coils retaining the most and the least condensate in a steady-state wind-tunnel test, likewise held the most and the least in a dip test. However, different amounts of water are retained on the air-side surface during dip tests and wind-tunnel tests. A model based on gravity, surface tension and drag effects is developed to help understand and predict the drainage behavior of heat exchangers. The new model and experimental approach are useful in screening heat exchangers for condensate retention and for assessing off-cycle drainage behavior.  相似文献   
77.
Kounadis  A. N. 《Nonlinear dynamics》1999,18(3):235-252
This work deals with dynamic buckling universal solutions of discrete nondissipative systems under step loading of infinite duration. Attention is focused on total potential energy functions associated with universal unfoldings of cuspoid type catastrophes with one active coordinate. The fold, dual cusp and tilted cusp catastrophes under statically applied loading occurring via limit points, asymmetric/symmetric bifurcations and nondegenerate hysteresis points are extended to the case of dynamic loading. Catastrophe manifolds of these types showing imperfection sensitivity under both types of loading are fully assessed. Important findings regarding dynamic buckling of imperfect systems generated by perfect systems associated with imperfect bifurcations are explored. The analysis is supplemented by a numerical application of a system exhibiting imperfect bifurcation when it is perfect as well as a hysteresis point associated with a tilted cusp catastrophe, when it becomes imperfect.  相似文献   
78.
The heat generated from dissipative mechanisms during shearing and opening dominated dynamic fracture of polymethyl methacrylate and polycarbonate was measured with a remote sensing technique that utilizes the detection of infrared radiation. Significant heating was detected for both materials and both modes of fracture. In the shear dominated experiments, the temperature increase at the crack tip in polymethyl methacrylate was 85 K, the approximate increase necessary to reach the glass transition temperature. An adiabatic shear band followed by a dynamically propagating crack were observed during the shear dominated experiments using polycarbonate. The recorded shear band temperature increase was 45 K. This was followed by an additional 100 K temperature increase from the ensuing crack, raising the temperature above glass transition. The maximum temperature increase recorded for the opening mode experiments was 55 K for polymethyl methacrylate and 105 K for polycarbonate. The results of this study show that temperature effects are significant during the dynamic fracture of polymers. The effects are especially important in the shear dominated case where local temperatures approach or exceed the polymer glass transition temperature.  相似文献   
79.
In this paper, reduction of vibration of a flexible planar mechanism is achieved through synthesis of an optimal controller. A finite element model, based on the equivalent rigid-link system theory, is used to accurately describe the dynamic behavior of the system. The model, which accounts for geometric and inertial nonlinearities of the mechanism, has been fully validated through experimental tests. In order to be able to employ the classical optimal control theory, a suitable linear model has been derived from the original one by means of a suitable linearization procedure. Vibration reduction can then be obtained by first defining an adequate performance index, which accounts for vibration amplitude, then by solving Riccati’s equation in order to find the controller that minimizes the performance index, i.e. the optimal controller. The results of several tests that have been carried out are also reported, to show the effectiveness of the synthesized control system.  相似文献   
80.
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.The project supported by the National Natural Science Foundation of China (50579081) and the Australian Research Council (DP0452681)The English text was polished by Keren Wang.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号